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We appreciate the recent paper of Schilling and Stanley (2022,
herea!er SS) on con"dence intervals for the hypergeometric
being brought to our attention, which we were not aware
of while preparing our paper (Bartro#, Lorden, and Wang
2022, herea!er BLW) on that subject. Although there are
commonalities between the two approaches, there are some
important distinctions that we highlight here. Following those
papers’ notations, below we denote the con"dence intervals for
the hypergeometric success parameter based on sample size n
and population size N by LCO for SS, and C∗ for BLW. In
the numerical examples below, LCO (github.com/mfschilling/
HGCIs) and C∗ (github.com/bartro!792/hyper) were computed
using the respective authors’ publicly available R code, running
on the same computer.

Computational time. LCO and C∗ di#er drastically in the
amount of time required to compute them. Figure 1 shows
the computational time of LCO and C∗ for α = 0.05, N =
200, 400, . . . , 1000, and n = N/2. For example, for N = 1000
the computational time of LCO exceeds 100 min whereas C∗

requires roughly 1/10th of a second (0.002 min). In further
numerical comparisons not included here, we found this rela-
tionship to be common for moderate to large values of the
sample and population sizes, n and N. This may be due to the
algorithm for computing LCO which calls for searching among
all acceptance functions of minimal span (SS, p. 37).

Provable optimality. SS contains two proofs, one in the
Appendix of a basic result about the hypergeometric parame-
ters, and one in the main text of the paper’s only theorem (SS,
p. 33) which is a general result that size-optimal hypergeometric
acceptance sets are inverted to yield size-optimal con"dence
“intervals.” However, not all inverted acceptance sets will yield
proper intervals, and in practice one o!en ends up with non-
interval con"dence sets, for example, intervals with “gaps.” This
occurs when the endpoint sequences of the acceptance intervals
being inverted are non-monotonic, or themselves have gaps. SS
address this by modifying their proposal in this situation to
mimic a method of Schilling and Doi (2014) developed for the
Binomial distribution. SS (pp. 36–37) write, Where there is a
need to resolve a gap, in which case the minimal span acceptance
function that causes the gap is replaced with the one having the
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Figure 1. The computational time of the con"dence intervals C∗ and LCO for α =
.05, N = 200, 400, . . . , 1000, and n = N/2.

next highest coverage. This modi"cation is nontrivial in that it, in
general, changes both the length and coverage probability of the
LCO acceptance and con"dence intervals. Since their optimality
argument relies on choosing the acceptance functions with the
highest coverage, does size optimality of LCO still hold when
instead choosing the “next highest” coverage, and utilizing a
technique for the Binomial that has not been veri"ed for the
hypergeometric? These questions are not addressed mathemati-
cally in SS, and similar questions remain about their proposed
con"dence intervals for the population size N. On the other
hand, BLW develops a complete optimality theory for C∗, which
is substantial (requiring 21 theorems and lemmas in the paper
and its supplement) and includes su$cient conditions for when
gaps in the optimal con"dence sets make C∗ sub-optimal. This
is rare and, even when it happens, only causes C∗ to be “too big”
by at most a single point.

Symmetry. In hypergeometric inference, any procedure
being used should give the same result whether the binary
property being counted is considered “success” or “failure,” such
distinctions being arbitrary. BLW call this property “symmetry”
while SS call it “equivariance” and write, Equivariance is
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Table 1. The proportion (“% Asymmetric,” to 1 decimal place) of LCO upper and
lower endpoint pairs that are asymmetric for α = 0.05, N = 200, 400, . . . , 1000,
and n = N/2.

N 200 400 600 800 1000

% Asymmetric 80.2% 76.1% 73.1% 77.1% 73.5%

appropriate when estimating the success parameter of the hyperge-
ometric distribution (SS, p. 35). The C∗ intervals are symmetrical
by construction and their optimality theory in BLW takes this
into account, which is necessarily more complex because of it.
When considering optimality, achieving symmetry is nontrivial
and is not just a matter of, say, replacing an asymmetric interval
by the re%ection of its counterpart since this could change both
the interval’s length and coverage probability. On the other hand,
the LCO intervals are asymmetric by design, and asymmetries
occur frequently. In the same setting as Figure 1, Table 1 contains
the proportion of LCO’s upper and lower endpoint pairs that are
asymmetric.

Because of these distinctions between the SS and BLW meth-
ods, we hope that readers will regard the two papers as distinct
though partially overlapping contributions to the statistics lit-
erature, and will consider the optimality results proved in BLW
as supporting many of the methodological recommendations in
both papers.
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